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This set of notes is a revision of the work of Animesh Kumar, 2002.

8.1 Showing almost sure convergence via subse-
quences

General settings/notation: let S, = Xj+...+X,,. The X;’s are assumed independent,
all defined on some probability space, (€2, F,P). Sometimes, we assume the X; are
identically distributed.

An important technique for showing almost sure convergence from convergence in
probability is to consider subsequences. We first note a few general facts about the
various types of convergence we know:

1. If Y, - Y as. then Y, — Y in P.

2. If Y, — Y in P then there exists a fixed increasing subsequence nj such that
Y, — Y as.

3. Y, — Y in P iff for every subsequence ny there exists a further subsequebce nj,
so that Yngﬂ — Y a.s.

Proofs of 2 and 3 are in the textbook. We first begin with a technique which uses the
information about almost sure convergence of a subsequence of a sequence of random
variables, and then somehow getting control over a maximum. Let us now describe
the technique.

One can prove Y,, — Y a.s. by first showing Y,,, — Y a.s. for some ny (we choose ny,)
and then getting control over

M= max |X,, —X,,]

ng §m<nk+1

In particular we must be able to show that M; — 0 a.s. because if w € € is such that
both X, (w) — 0 and My(w) — 0 then we get (using the triangle inequality and th
fact that the max is greater than the elements of set over which maximum is taken)

X (w) = X(w),
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so if M}, == 0, then the above holds almost surely. To illustrate how to use the
technique, we start with the example of SLLN with a second moment condition.

Theorem 8.1 If X, X1, X, ... are i.i.d. random variables with E(X) = p, E(X?) <
00, and S, = X1+ Xo+ ...+ X,,, then

— E(X) a.s. (8.1)

Proof: First we find a subsequence converging almost surely to the mean. For that
we use two tools:

e convergence in probability; and

e the Borel-Cantelli lemma.

Without loss of generality, we can assume that F(X) = 0. From Chebyshev’s in-
equality we get
il

This means that % — 0 in IP. Notice that Y, 75 converges to a finite value, therefore
for the subsequence n; = k? we get, using the Borel-Cantelli lemma,

Sn

n

)< B

ne2

which means that Sn%z — 0 a.s.

Now let us try to control My as defined above. For convenience we define

D, := max |Sp— S|
n2<k<(n+1)2

for n® <k < (n+1)% We have |Si| < [S,2|+ D, and + < -5, so we have the following
inequality:

Sl || | Dn
k|~ | n? n?’
Finally, using the definition of M}, we get the following:
M, < max =k Sn2 '
n2<k<(n+1)? | k
Shp2 D,
= |t
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So all we need to prove is that % — 0 a.s. Let us define a new quantity 7;, =
Sn24m — Sp2. Therefore,

D? = max T?
n 1<m<2n ™

2n
S
m=1
Taking expectations on both sides, we get that

2n
E(D}) < Y mo®=n(2n+1)o’
m=1
< 4n202,

where F(X?) = o2. Hence we get that

2
D, E((%)")
Pllzl=e) = —=—
402
S e

Applying the Borel-Cantelli lemma with the fact
D,
g P <'—2 > e) < 00
n

we get that % — 0 a.s., which completes the proof. [ ]

8.2 Kolmogorov’s Maximal Inequality
Now we proceed to Kolmogorov’s inequality. We formally state it as follows.

Theorem 8.2 (Kolmogorov’s Inequality) Let X1, Xs, ... be independent with E(X;) =
0 and 0? = E(X?) < 0o, and define Sy, = X1 + Xo + ... + X. Then

P <max 1S,| > e) < B (8.2)

1<k<n €?

Proof: Decompose the event according to when we escape from the 4 strip. Let

A ={|Sn| < efor 1 <m < k; |Sk| > €}
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In words, Aj, is the event that the first escape out of the € strip occurs at the kth step.
Also notice that all these events are disjoint, and that (J;_, Ay {max;<,<, |Sk| > €}.
Then,

(3] S

We can split 5% = S2 + (S, — Sk)? + 251(S,, — Si), and write

E(S214,) = E(Sila,) +E((Sw—Sk)’1a,) + E(2(S, — Sk)Skla,)
Z 6%P04k%

where the first term is larger than €2, the second term is always positive, and the
third term is the expectation of a product of two independent random variables witn
mean 0.

Finally, we put this into the summation to get

E(S?) > iP(Ak)é =P (max |Sk| > e) 2

1<k<n
k=1

which easily leads to the result. This completes the proof. [ ]
We observe that the inequality is valid for any sequence of r.v.’s (X1, ...X,,) such that

E(2(S, — S)Skla,) = 0.

This will lead to the definition in future lectures of a martingale difference sequence.



