
Lecture 8 : Almost sure limits for sums of independent random variables

STAT205 Lecturer: Jim Pitman Scribe: Hua Chen <hchen@berkeley.edu>

This set of notes is a revision of the work of Animesh Kumar, 2002.

8.1 Showing almost sure convergence via subse-

quences

General settings/notation: let Sn = X1 + ...+Xn. The Xi’s are assumed independent,
all defined on some probability space, (Ω,F , P). Sometimes, we assume the Xi are
identically distributed.

An important technique for showing almost sure convergence from convergence in
probability is to consider subsequences. We first note a few general facts about the
various types of convergence we know:

1. If Yn → Y a.s. then Yn → Y in P.

2. If Yn → Y in P then there exists a fixed increasing subsequence nk such that
Ynk

→ Y a.s.

3. Yn → Y in P iff for every subsequence nk there exists a further subsequebce n′
k

so that Yn′

k
→ Y a.s.

Proofs of 2 and 3 are in the textbook. We first begin with a technique which uses the
information about almost sure convergence of a subsequence of a sequence of random
variables, and then somehow getting control over a maximum. Let us now describe
the technique.

One can prove Yn → Y a.s. by first showing Ynk
→ Y a.s. for some nk (we choose nk)

and then getting control over

Mk = max
nk≤m<nk+1

|Xm − Xnk
|

In particular we must be able to show that Mk → 0 a.s. because if ω ∈ Ω is such that
both Xnk

(ω) → 0 and Mk(ω) → 0 then we get (using the triangle inequality and th
fact that the max is greater than the elements of set over which maximum is taken)

Xm(ω) → X(ω),

8-1



Lecture 8: Almost sure limits for sums of independent random variables 8-2

so if Mk

a.s.

−→ 0, then the above holds almost surely. To illustrate how to use the
technique, we start with the example of SLLN with a second moment condition.

Theorem 8.1 If X, X1, X2, ... are i.i.d. random variables with E(X) = µ, E(X2) <

∞, and Sn := X1 + X2 + ... + Xn, then

Sn

n
→ E(X) a.s. (8.1)

Proof: First we find a subsequence converging almost surely to the mean. For that
we use two tools:

• convergence in probability; and

• the Borel-Cantelli lemma.

Without loss of generality, we can assume that E(X) = 0. From Chebyshev’s in-
equality we get

P

(
∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ε

)

<
E(X2)

nε2
.

This means that Sn

n
→ 0 in P. Notice that

∑

k

1
k2 converges to a finite value, therefore

for the subsequence nk = k2 we get, using the Borel-Cantelli lemma,

P

(
∣

∣

∣

∣

Sn2

n2

∣

∣

∣

∣

> ε i.o.

)

= 0,

which means that
S

n2

n2 → 0 a.s.

Now let us try to control Mk as defined above. For convenience we define

Dn := max
n2≤k<(n+1)2

|Sk − Sn2|

for n2 ≤ k < (n+1)2. We have |Sk| ≤ |Sn2|+Dn and 1
k
≤ 1

n2 , so we have the following
inequality:
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.

Finally, using the definition of Mk, we get the following:

Mk ≤ max
n2≤k<(n+1)2
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∣
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So all we need to prove is that Dn

n2 → 0 a.s. Let us define a new quantity Tm =
Sn2+m − Sn2. Therefore,

D2
n = max

1≤m≤2n
T 2

m

≤
2n
∑

m=1

T 2
m.

Taking expectations on both sides, we get that

E(D2
n) ≤

2n
∑

m=1

mσ2 = n(2n + 1)σ2

≤ 4n2σ2,

where E(X2) = σ2. Hence we get that

P

(
∣

∣

∣

∣

Dn

n2

∣

∣

∣

∣

> ε

)

≤
E
(

(

Dn

n2

)2
)

ε2

≤
4σ2

n2ε2
.

Applying the Borel-Cantelli lemma with the fact

∑

n

P

(
∣

∣

∣

∣

Dn

n2

∣

∣

∣

∣

> ε

)

< ∞

we get that Dn

n2 → 0 a.s., which completes the proof.

8.2 Kolmogorov’s Maximal Inequality

Now we proceed to Kolmogorov’s inequality. We formally state it as follows.

Theorem 8.2 (Kolmogorov’s Inequality) Let X1, X2, ... be independent with E(Xi) =
0 and σ2

i = E(X2
i ) < ∞, and define Sk = X1 + X2 + ... + Xk. Then

P

(

max
1≤k≤n

|Sk| ≥ ε

)

≤
E(S2

n)

ε2
. (8.2)

Proof: Decompose the event according to when we escape from the ±ε strip. Let

Ak = {|Sm| < ε for 1 ≤ m < k; |Sk| ≥ ε}
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In words, Ak is the event that the first escape out of the ε strip occurs at the kth step.
Also notice that all these events are disjoint, and that

⋃

n

k=1 Ak {max1≤k≤n |Sk| ≥ ε}.
Then,

E(S2
n) ≥ E

(

S2
n1

(

n
⋃

k=1

Ak

))

n
∑

k=1

E
(

S2
n1Ak

)

.

We can split S2
n = S2

k
+ (Sn − Sk)

2 + 2Sk(Sn − Sk), and write

E
(

S2
n1Ak

)

= E
(

S2
k1Ak

)

+ E
(

(Sn − Sk)
21Ak

)

+ E (2(Sn − Sk)Sk1Ak
)

≥ ε2
P(Ak),

where the first term is larger than ε2, the second term is always positive, and the
third term is the expectation of a product of two independent random variables witn
mean 0.

Finally, we put this into the summation to get

E(S2
n) ≥

n
∑

k=1

P(Ak)ε
2 = P

(

max
1≤k≤n

|Sk| ≥ ε

)

ε2,

which easily leads to the result. This completes the proof.

We observe that the inequality is valid for any sequence of r.v.’s (X1, ...Xn) such that

E (2(Sn − Sk)Sk1Ak
) = 0.

This will lead to the definition in future lectures of a martingale difference sequence.


